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Abstract. An open system weakly coupled to a reservoir which consists of many quantum
subsystems satisfying the Wigner level fluctuation law is considered. It is argued that for
such systems 1/f noise appears as a generic phenomenon.

A commonly observed noise spectrum has 1/f behaviour over a broad frequency range
[1]. In this paper we shall reproduce this spectrum using a quite general model of an
open system weakly coupled to a reservoir. The main assumption is that the reservoir
consists of many quantum subsystems which satisfy the Wigner level fluctuation law
{wLFL) [2]. The wrFL is widely supported by experiments in nuclear [3] and atomic
[4] physics and by numerical computations for quantum models exhibiting chaotic
behavior [5].

We start with a general scheme including quantum or classical open system S
weakly interacting with a reservoir R. The dynamics is governed by the Liouville
superoperator {we put i=1)

ﬁzﬁs"'ﬁg‘l'ﬁs;g (1)

defined by the Hamiltonians H, Hs, Hg, Hsg respectively. Let {A) denote the average
value of an observabie A in the fixed staiionary staie p,. We siudy the autocorreiation
function (X, X,) (X, = ¢xp(iI:It)X) of the observable X of § which satisfies the condi-
tions: (X)=0, HsX =0.

We have

(X:Xr')= (XX,-_,)=f;‘(I’—I) (2)

and its spectrum is given by (o = 27f)
Sx(w)=ReJ. Sy e dr. (3)
1}

This is a proper definition for the classical case where 8,(w)= S.(w) —8.(—w)=0. For
the quantum case 8, (w) is of the order of (exp{—w/kT)—1) but fortunately |w/kT}« 1

Zam AT ATt ambs o nAica

ii1 all CAPETimeiis Uil l,fJ' noise.
In order to calculate S,(w) we use a Mori treatment of the generalized Langevin

equation [6] together with the weak coupling assumption. This assumption means that
approximately po=ps® pr (uncorrelated state) and that the evolution of the ‘random
force’ F, (Fy=X,) is driven by the free reservoir’s dynamics exp(lHRt) Putting the
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interaction Hamiltonian Hsr = V®¢ (V, ¢ is an observable of §, R respectively) we
obtain

= i) _ 2 1
.L S e dr=(X )iw+G(w) (4)
where
G(w)=(<<ffX>2>/<x2>)j (pe)e™ dt. ()
0
Hence
_ plw)

where p(w)=Re G(w), v(w)=Im G{w).

S.(w) exhibits 1/ w behaviour for i, < |w| < @, under the following conditions:

(I) linear shape of u(w), ie. u(w)= y|wl, for wp, <|w| < @mna;

(II) ‘“fine tuning’ of the renormalized frequency, i.e. v{w)= v+ wr,(w) such that
[70] € @inin, [1{@)] < 1 fOr @min <|w| < @max-

A typical model of R is a free Bose field in the equilibrium state representing
photons, phonons etc. Moreover the coupling of § and R is assumed to be linear in
field, local and of the gradient type. Therefore if we assume the linear dispersion
relation w(k) = v|k| for the field’s quanta and for ||« kT we obtain: wu(w) is propor-
tional to |w|? ™" where d is the dimension of the configuration space. As a consequence
such models may explain 1/f noise for two-dimensional systems only. Another argu-
ment against such models (at least for low-frequency fluctuations in solids) is that the
wavelengths of photons, phonons etc corresponding to the frequency interval
[Wmin» @max] are much larger than the typical length of the sample,

We propose now a physically different realization of the free Bose field reservoir.
We assume that the system S is coupled by means of a long range interaction to N
identical quantum subsystems with discrete spectra. We choose the interaction
Hamiltonian of the mean-field type

Hsp=V®en(Q) (7

with ¢ {(Q) = N"V? I, Q' scaled as fluctuations. The constituents of R are treated
as independent, which implies Hg =27, A% and pr =®n p,. We put also tr(p, Q) =0
and Epl =0. Introducing time dependence of ¢n(Q) by on(Q, 1) =exp(iﬁRr)(pN(Q)
one may prove that [7, &]

lim on(Q 1)=¢(Q) (®)

where ©{A) is a smeared Bose field defined on the ‘single particle’ Hilbert space
{Ac 3,). ¥, is a closure of the space of observables for a single bath constituent such
that tr(p, A) =0 and equipped with the scalar product

(A|B)=tr(p, A" B). (9)

The limit (8) means that the multitime correlation function for ¢u(Q, t) tend to
the vacuum expectation values for products of the related field operators ¢((Q, 1}. For
example

(en(Qlen(Q, 1)~ (0l (Q)0(Q)0)=(Q|Q). (10)



1/f noise and the level fluctuation law 4753

The time evolution 1 A, is defined by A, =¢'A ¢™**". Introducing the spectral resol-
utionof h =X, &,In)(n|, (¢,+, = £,) and using (5), (8), (9), (10} we may write for N - c©

@)= m* [l Q) Enlor|m3[(e, ~ £,) - w] (1)
V(@) =21 T [n|QIn){nlpin) ———— (12)
nn' (€n~£n')_w

with A= (({ VX)2/(X).

The next assumption is that the constituents of R are not strictly identical but they
are rather described by the ensemble of Hamiltonians {h} satisfying the wrrL. Therefore
the nearest-neighbour level spacing distribution is given by [2, 3]

p(s)=(ms/207) exp(—ws’/40%) (13)

where s = (g, — £,) and Q is the average level spacing. Generally in the formula (11)
all the splittings between levels up to about kT will appear. However, for |w|« () only
the nearest-neighbour levels are relevant. For example if the nearest-neighbour spacings
are statistically independent (e.g. Poisson case) the probability P(e, ,—¢g,<A}=
P*(e,.)— £, <A) for A« (. For systems exhibiting wLFL we expect ‘spectral rigidity’
{5] which makes the contribution from non-nearest neighbours even less important.
Hence for |w|« () and if the values of |Q,,| for n'=n+1 are not strongly correlated
with the energy differences ¢,,, — ¢, we obtain the linear shape of p(w)

wlw)=mA*Q%p(|o)} = (mrQ/ Q) |w|. (14)

Here Q =33, [<"|P1|n>+(n+1|Pll"+1>]|onn+:|2
We shall consider now the ‘fine tuning’ condition (II). In order to estimate v(w)
we use the formula which follows from (11) and (12) in the case of continuous w{w)

w)——yj“”)x (15)
X—w
Assuming that all relevant random energy levels {#,, €,,...} form a band of the width
AE « kT we obtain a flat probability distribution {r|g,|n) = (n'|p,|n’} which leads to
m{w)=pu{—e) and hence to v,=0 and

1 (AE)?
vl(w)=;g’J ;’_(g) dé (16)

where y(§)=;.c(§”2)_/§"'2. Due to the weak coupling condition y{£)« 1 and due to
(14) y(£) = y=(mrQ/0)* for £« Q> Then roughly for w « AE

2 AE AE
.(w)—-" ¥yIn—<¥In
w

(17)
Wmin

with ¥ = y{(£&,) for a certain value £ in the interval [0, AE’]. Summarizing, the 1/f
noise appears for the observable X which is a constant of motion of the isolated system
S and if S is weakly coupled to a special kind of reservoir R. Namely, R is an ensemble
of localized quantum systems which satisfy the wLFL parametrized by the average
nearest-neighbour spacing () and with the total energy band width AE. The following
conditions must be satisfied to reproduce a 1/w power spectrum for X, in the interval
[wmina wmax]:

W < <AE« kT (18)
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and
Omin=AE exp(—1/¥) < kT exp(—1/ %) (19)

where ¥<« 1 describes the strength of the coupling between § and R. Putting the
characteristic parameters for low-frequency fluctuations in solids [1] @y, =10""5"",
Wamax = 105", T=10? K, we obtain

107" eV R <AE« 1077 eV 0<y<102 (20)

Hence one can see that the conditions (1), (11) in fact are not of the fine tuning type
and could be realized for a broad range of parameters.
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