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Abstract. An open system weakly coupled to a reservoir which consists of many quantum 
subsystems satisfying the Wigner level fluctuation law is considered. It is argued that for 
such systems I/f noise appears as a generic phenomenon 

A commonly observed noise spectrum has l/f behaviour over a broad frequency range 
[l]. In this paper we shall reproduce this spectrum using a quite general model of an 
open system weakly coupled to a reservoir. The main assumption is that the reservoir 
consists of many quantum subsystems which satisfy the Wigner level fluctuation law 
(WLFL) [2 ] .  The WLFL is widely supported by experiments in nuclear [3] and atomic 
[4] physics and by numerical computations for quantum models exhibiting chaotic 
behavior [SI. 

We start with a general scheme including quantum or classical open system S 
weakly interacting with a reservoir R. The dynamics is governed by the Liouville 
superoperator (we put h = 1) 

A = As+ AR + ASR (1) 

defined by the Hamiltonians H, Hs, H R ,  Hsn respectively. Let { A )  denote the average 
vaiue of an observabie A in ?ne fixed siaiionary siaie po. 'iv'e siudy ihr autocorrriaiion 
function (X,X,.) (X, =exp(iHf)X) of the observable X of S which satisfies the condi- 
tions: (x) = 0, ASx = 0. 

We have 

(X,X,.)= (XX ,1_, ) = f , ( t ' - t )  (2) 

and its spectrum is given by (o = 2rf) 

S , ( w )  = R e  I o m f , ( t )  e-'" df.  ( 3 )  

This is a proper definition for the classical case where &(o) = S,(w) -S,(-w) = 0. For 
thequantumcaseS,(o)isoftheorderof(exp(-w/kT)-l) but fortunatelylo/kTl<< 1 
:- " I )  -__"_:.---.n -- 3 / E  
111 61, snpr;,,rr,rrrra "11 ' , J  IIVLIC.  

In order to calculate & ( U )  we use a Mori treatment of the generalized Langevin 
equation [6] together with the weak coupling assumption. This assumption means that 
approximately pa= p s O p n  (uncorrelated state) and that the evolutio? of the 'random 
force' F, (Fo=Xa) is driven by the free reservoir's dynamics exp(iH,t). Putting the 
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interaction Hamiltonian HsR = V @ Q  ( V ,  Q is an observable of S, R respectively) we 
obtain 

?m 
I J fx( t )e- '" 'd t=(X2).  

n I W + G ( W )  
(4) 

where p ( w )  = R e  C ( w ) ,  ~ ( w )  = Im G ( w ) .  
S , (w)  exhibits l / w  behaviour for U,,,;"< IwI under the following conditions: 
(1) linear shape of p ( w ) ,  i.e. p ( w ) =  yIw( .  for W , ; ~ < ~ W ~ < W , ~ ~ ;  

(11) 'fine tuning' of the renormalized frequency, i.e. .(U)= v , , + w v , ( ~ )  such that 
lvd<<wmin, IyI(w)/<< 1 for w , ; . < I w I < w ~ ~ ~ .  

A typical model of R is a free Bose field in the equilibrium state representing 
photons, phonons etc. Moreover the coupling of S and R is assumed to be linear in 
field, local and of the gradient type.'Therefore if we assume the linear dispersion 
relation w ( k ) =  olkl for the field's quanta and for 1w1<< kT we obtain: p ( w )  is propor- 
tional to Iwld-' where d is the dimension of the configuration space. 4 s  a consequence 
such models may explain l/f noise for two-dimensional systems only. Another argu- 
ment against such models (at least for low-frequency fluctuations in solids) is that the 
wavelengths of photons, phonons etc corresponding to the frequency interval 
[w,,,;,, w,,,] are much larger than the typical length of the sample. 

We propose now a physically different realization of the free Bose field reservoir. 
We assume that the system S is coupled by means of a long range interaction to N 
identical quantum subsystems with discrete spectra. We choose the interaction 
Hamiltonian of the mean-field type 

H S R  = V@QP,(Q) (7)  

with q N ( Q )  = N-1'2 X.*"=, Q'" scaled as fluctuations. The constituents of R are treated 
as independent, which implies HR hfk'  and pn =ONpI. We put also t r ( p , Q )  = O  
and hp,=O.  Introducing time dependence of pN(Q)  by qP,(Q, t )=exp(iHRt)qp,(Q) 
one may prove that [7 ,8]  

lim q d Q ,  t ) = d Q , )  . (8) 
N-m 

where q(A) is a smeared Bose field defined on the 'single particle' Hilbert space X, 
( A E  X,), Z, is a closure of the space of observables for a single bath constituent such 
that tr(p,A) = O  and equipped with the scalar product 

(AIB)= tr(p,A+B). (9) 

The limit (8) means that the multitime correlation function for q N ( Q ,  1) tend to 
the vacuum expectation values for products of the related field operators Q(Q,  1). For 
example 

( ( P ~ ( Q ) Q ~ ( Q ,  1 ) ) -  (olrp(Q)(~(Q,)O)=(Qlg,). (10) 
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The time evolution t +  A, is defined by A, = ejh'A eCih'. Introducing the spectral resol- 
ution of h = Zn &Jn)(nl, (E .+ ,  3 E , )  and using ( 5 ) ,  (81, (9), (10) we may write for N -* 00 

(11) ~ ( 0 )  = wA2 I: I(nIQln')I'(nIPiIn)s[(E, -E,C--WI 
n."' 

with A ' = ( ( (  P X ) * ) / ( X 2 ) ) ,  
The next assumption is that the constituents of R are not strictly identical but they 

are rather described by the ensemble of Hamiltonians { h ]  satisfying the WLFL. Therefore 
the nearest-neighbour level spacing distribution is given by [2,3] 

p(s)=(7rs/2f12) exp(-7rs'/4f12) (13) 

where s = (E .+ ,  - E . )  and fl is the average level spacing. Generally in the formula ( I  1) 
all the splittings between levels up to about kT will appear. However, for /ole fl only 
the nearest-neighbour levels are relevant. For example if the nearest-neighbour spacings 
are statistically independent (e.g. Poisson case) the probability P ( E , , + ~ -  E. <A) = 
P 2 ( ~ , + ,  - E "  < A )  for A<< fl. For systems exhibiting WLFL we expect 'spectral rigidity' 
[5] which makes the contribution from non-nearest neighbours even less important. 
Hence for Iw/ <C fl and if the values of IQ,,+ for n ' =  n + 1 are not strongly correlated 
with the energy differences 

p ( w )  = 7 r ~ 2 Q 2 p ( l W / )  = (P~Q/n)21wl. (14) 

Here 6 '=fZ.,  [(nlPlln)+(n+ l l ~ ~ l n + 1 ) 1 I Q , , ~ + , l ~ .  
We shall consider now the 'fine tuning' condition (11). In order to estimate u ( w )  

we use the formula which follows from (11) and (12) in the case of continuous p ( w )  

- E "  we obtain the linear shape of p ( w )  

Assuming that all relevant random energy levels { E , .  E > ,  . . .) form a band of the width 
A E e  kT we obtain a flat probability distribution (nlp,in)=(n'lplln') which leads to 
p ( w ) = p ( - w )  and hence to U,-0 and 

where r ( f ) = p ( c " 2 ) / ( ' i 2 .  Due to the weak coupling condition y ( [ )<<  1 and due to 
(14) y ( f ) = y = ( d Q / f l ) ' f o r  c<<f12.Then roughlyforw<<AE 

2 AE AE 
u , ( w ) = -  r l n - < r l n -  

7r 0 Wmin 

with ?= y(&) for a certain value to in the interval [O, AE2]. Summarizing, the l/f 
noise appears for the observable X which is a constant of motion of the isolated system 
S and if S is weakly coupled to a special kind of reservoir R. Namely, R is an ensemble 
of localized quantum systems which satisfy the WLFL parametrized by the average 
nearest-neighbour spacing fl and with the total energy band width AE. The following 
conditions must be satisfied to reproduce a l / w  power spectrum for X, in the interval 

w m a X < < f l < A E < <  kT (18) 

[%i", "J: 
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and 

w,,.=AE exp(-l/T)<< kT exp(-l/T) (19) 

where T<< 1 describes the strength of the coupling between S and R. Putting the 
characteristic parameters for low-frequency fluctuations in solids [ I ]  U,,,;"= IO-'s-', 
wmax = 104s-', T =  lo2 K, we obtain 

lO-"eV<<i2<AE<< 10-2eV o< T <  10-2. (20) 

Hence one can see that the conditions (I), (11) in fact are not of the fine tuning type 
and could be realized for a broad range of parameters. 
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